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Abstract 

An iterative method for the determination of structure- 
factor amplitudes and phases of crystals with unknown 
structure is proposed. The method is based on the 
quantitative evaluation of energy-filtered convergent- 
beam electron diffraction (CBED) patterns. It has been 
applied to the metastable phase AlmFe ( m -  4.2-4.4), 
which was found as primary particles in commercial 
aluminium alloys. When the rocking curves of reflec- 
tions along a (100) systematic row are fitted, a number 
of structure-factor amplitudes and signs of h00-type 
reflections of AlmFe have been determined successfully. 
The accuracy of the structure-factor amplitudes is better 
than 5% for the strong reflections and about 10% for the 
weak reflections. The aim of this method is to provide 
accurate structure-factor data, including both ampli- 
tudes and phases, for ab initio structure determination 
and refinement of unknown structures by using electron 
diffraction techniques. 

1. Introduction 

Crystallographic methods for structure determination 
are commonly based on diffraction experiments, in 
which the intensities of the diffracted beams rather than 
the structure factors are measured. If the kinematical 
scattering approximation is valid, like in an X-ray or a 
neutron diffraction experiment, a linear relationship 
exists between the diffraction intensities and the square 
of the structure-factor amplitudes but the phases of the 
structure factors are lost. For X-ray or neutron 
diffraction, very successful structure determination 
techniques, based on Patterson maps (see, for instance, 
Giacovazzo, 1992) or the direct phasing method 
(Woolfson, 1961), have already been developed. 
There exist standardized routines covering each single 
step from experimental data collection to locating atoms 
within the unit cell of a crystal with an unknown 
structure. But no such routine exists in electron 
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diffraction, although structure determination and refine- 
ment from electron diffraction may be a practical 
alternative when suitable samples for X-ray and neutron 
diffraction are not available. Therefore, for a long time, 
it has been a task for many electron crystallographers to 
solve unknown crystal structures solely by electron- 
microscopy techniques, i.e. ab initio structure deter- 
mination. 

The minimum requirement for structure determina- 
tion from electron diffraction is a sufficient set of 
kinematical, or near kinematical, intensities measured 
with satisfactory accuracy. These kinematical intensity 
data could then be treated by standard methods known 
from X-ray crystallography. Analysis of experimental 
electron diffraction intensity data along such lines has 
been applied successfully to organic crystals (Dorset, 
1991) and even to some inorganic materials under 
conditions when kinematical scattering is predominant. 
Unfortunately, this is not the case for most inorganic 
materials. 

In the case of dynamical scattering, there is no 
simple relationship between the structure-factor ampli- 
tudes and the intensities of the corresponding dif- 
fracted beams. In addition to the dynamical effects, 
the intensities of conventional selected-area electron 
diffraction patterns are affected by different excitation 
errors. Furthermore, the intensities are averaged over 
an illuminated crystal area whose thickness may vary 
in an unspecified way. Hence, in electron diffraction 
the spot pattern intensities are much less useful than 
the integrated intensities obtained by X-ray and 
neutron diffraction. Up to now, the usual way to 
overcome the problem of dynamical effects has been 
to reduce the effects by using a thin crystal or stick to 
structures with only light atoms. Another possibility is 
to use the intensities of high-order reflections whose 
extinction distances are longer than those of the low- 
order reflections and therefore are less affected by the 
dynamical effects (Tafto & Metzger, 1985). The 
convergent-beam electron diffraction (CBED) tech- 
nique, on the other hand, offers the possibility of 
collecting the integrated intensities. Tafte & Metzger 
(1985) proposed a method for the intensity measure- 
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merit of high-order reflections along a systematic row, 
where the integrated intensities could be treated 
kinematically. An application of this technique to a 
structure refinement has been described by Ma, 
Romming, Lebech, Gj~nnes & Taft~ (1992). Vincent 
& Bird (1986) developed another method for the 
kinematic intensity measurement of high-order Laue- 
zone (HOLZ) reflections and determined the structure 
of a metastable AI-Ge phase (Vincent & Exelby, 
1995). A precession electron diffraction technique 
developed by Vincent & Midgley (1994) offers the 
possibility of collecting a large diffraction data set of 
integrated intensity. A structure determination of the 
rare-earth pyrogermanate Er2Ge207 was successfully 
performed by using the diffraction data set of high- 
order reflections obtained by this technique (Midgley, 
Sleight & Vincent, 1994). 

Dynamical scattering makes direct analysis of the 
diffraction intensities difficult but, in turn, it 
provides the possibility of determining the phases 
of the structure factors. Several quantitative CBED 
techniques have been developed by different groups 
for the purpose of determination of accurate 
structure-factor amplitudes and phases of crystals 
whose structures are already known (Zuo, Spence & 
O'Keeffe, 1988; Bird & Saunders, 1992; Holmestad, 
Zuo, Spence, Haier & Horita, 1995). The quanti- 
tative technique developed by Zuo & Spence (1991) 
is for automated structure-factor amplitude and phase 
refinement from CBED patterns. It uses a many- 
beam dynamical calculation for the rocking-curve 
fitting. The structure factors of the reflections that 
satisfy the Bragg condition along a systematic row 
are refined during the rocking-curve fitting. This 
technique has been modified by Deininger, Necker 
& Mayer (1994), who improved the refinement 
process by utilizing a global refinement algorithm, 
and by Niichter, Weickenmeier & Mayer (1995). 
The structure-factor amplitudes and phases obtained 
by these techniques are accurate enough to provide 
information on the bonding charge distribution of 
crystals. However, the method has never been used 
for structure determination of unknown crystal 
structures. 

In the present investigation, we have, for the first 
time, applied the quantitative CBED technique to a 
crystal of unknown structure in order to determine 
accurate structure-factor amplitudes and phases. A 
series of structure-factor amplitudes and signs of the 
reflections along a systematic row have been deter- 
mined successfully. The experimental accuracies and 
limitations will be discussed. The accurate structure 
factors determined with our new method, which in the 
given case cannot be obtained by any other technique, 
are an important step forward in the effort towards ab 
initio structure determination from electron diffraction 
techniques. 

2. Material and experiment 

2.1. Al,,Fe: an unknown phase 

The metastable phase Al,,,Fe (m = 4.2--4.4) is com- 
monly observed as primary particles in commercial 
aluminium alloys cast with high cooling rates. Its unit 
cell is .body-centered tetragonal with a = 8.84, 
c = 21.6A (Miki, Kosuge & Nagahama, 1975). The 
space group has been reported to be I4/mmm (No. 139), 
a centrosymmetrical space group, by Skjerpe, Gjmmes 
& Langsrud (1987) and Cheng, Hui & Li (1991) from 
its selected-area electron diffraction patterns and CBED 
patterns. In this space group, a structure model with Fe 
surrounded by AI in a CsCl-type local arrangement as a 
building block has been proposed by Skjerpe (1988). 
The model contains about 110 atoms (90 Al and 20 Fe). 
No refinement was attempted for this structure model, 
which thus must be regarded as tentative. 

Owing to the centrosymmetric of the 14/mmm space 
group, the phases of all its structure factors are either 0 
or zr. However, it should be noted that another space 
group, I4m2 (No. 121), which is a non-centrosym- 
metric space group, was suggested by Hansen, Berg & 
Gjonnes (1995). The Patterson sections calculated from 
the precession electron diffraction data of the Al,,,Fe 
phase are incompatible with the 4ram symmetry along 
the [001] zone axis but correspond to a 4m2 sym- 

metry. However, even for the non-centrosymmetric 
space group 14m2, the structure-factor phases of the hk0 
reflections remain either 0 or zr because of the (110) 
mirror plane. 

2.2. Experiment 

The powder sample of AlmFe was prepared from the 
commercial twin-roll cast AA5052 [Al-2.5%Mg- 
0.24%Cr-0.28%Fe-0.05%Si(wt%)] alloy by using an 
extraction technique described by Simensen, Fartum & 
Anderson (1984) and Strid & Simensen (1986). The 

Fig. 1. Bright-field image of a single-crystal AI.,Fe particle on the 
holey carbon film. 
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strip cast aluminium alloy that contains the AI,  Fe phase 
as primary particles was dissolved in butanol. Extracted 
crystals, which are suitable for the TEM observation, 
were collected with a filter. The TEM samples were 
then prepared by dispersing the crystals in alcohol and 
collecting them on holey carbon grids. The particles of 
AI,  Fe are in the size range 1-101am. Fig. 1 shows a 
bright-field image of such a particle. The AlmFe 
particles are usually single crystals but often with a 
complicated morphology. 

A Zeiss EM 912 Omega Energy Filtering 
Transmission Electron Microscope was used for the 
CBED experiments. The microscope is equipped 
with an LaB 6 filament and was operated at 120kV. 
The novel built-in imaging Omega energy filter 
removes the electrons that have suffered inelastic 
scattering. In the energy-dispersive plane of the 
filter, the slit was adjusted to yield an energy width 
of 10eV, which is sufficient to remove most of the 
inelastically scattered electrons. A Gatan double-tilt 
liquid-nitrogen-cooled specimen holder was used in 
order to reduce the contamination by the illuminat- 
ing beam and to minimize the thermal diffuse 
scattering that cannot be removed by the energy 
filter. The specimens were cooled to nominal 
temperatures of l10-120K and the total probe 
current was kept so that the estimated beam heating 
in the irradiated area did not exceed 10K. The 
probe size used was about 20nm. All energy-filtered 
CBED patterns were acquired directly with a Gatan 
1024 x 1024pixel slow-scan CCD camera attached to 
the Zeiss microscope and operated with the Gatan 
Digital Micrograph software. The digitized CBED 
patterns are then transferred to DEC3000 work- 
stations for further processing. 

by Niichter et al. (1995). The goodness of the fit is 
defined by a X 2 criterion, where 

N 
X 2 = ( |  I N )  E(c,~ .~° - ~/xp)2/o~/ .  

i=1 

Here, ff/xp and//~eo are the experimental and calculated 
intensity values of the point i within the line scan, c is a 
normalization constant and tr i is standard deviation of 
experimental intensity in pixel i. 

In addition to the structure factors and the thickness, 
there are four geometrical parameters that have to be 
refined in the process of rocking-curve fitting. There are 
two parameters for defining the incident-beam direction 
and two parameters for defining the length and the 
orientation of the reciprocal-lattice vector g in the 
diffraction pattern. Since only the reflections along the 
systematic row are included in the many-beam calcula- 
tion, only one parameter defining the incident-beam 
direction has to be refined and the second one is always 
kept fixed. This parameter can be refined very 
accurately from the rocking-curve fitting. However, 
the length and orientation of the g vector are more 
flexible if only one line scan across the rocking-curve 
fringes is fitted, since both the length and the orientation 
could be changed simultaneously to fit the intensity 
profile, which in turn changes both the thickness and the 
structure-factor amplitude in the refinement. To over- 
come this problem, two parallel line scans were taken 
across each pattern. If the intensity profiles of the two 
line scans are fitted, the g vector orientation can be 
fixed. If two Bragg positions are present in one CBED 
pattern with systematic reflections, the length of the g 
vector can also be refined very accurately. 

2.3. Data processing 

All CBED patterns were deconvoluted with the point- 
spread function of the CCD camera (Weickenmeier, 
Niichter & Mayer, 1995) before any further processing. 
The crystal was tilted to an orientation in which only the 
reflections along a systematic row are strongly excited 
and the off-systematic-row reflections are as weak as 
possible. Then the intensity distribution inside the 
reflection discs shows characteristic fringes, which are 
called rocking-curve fringes. Line scans were extracted 
to obtain intensity profiles across the fringes. 

In principle, the intensity distribution in any CBED 
pattern is determined by the structure factors (both 
elastic and inelastic structure factors) of the reflections, 
the thickness of the sample and the direction of the 
incident beam. The intensity distribution across the 
fringes is equivalent to rocking curves around the Bragg 
positions of systematic row reflections. An automated 
rocking-curve-fit program was used for structure-factor 
determination. The details of the program are described 

• . • 

200 400 

• • • Q 

Fig. 2. A selected-area electron diffraction pattern taken along the 
[001l zone axis of the AI~Fe particle. 
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Table 1. I U6ool determined from two-beam rocking- 
curve fit 

No. I U6001 (A-2) A V60o (,~-2) t (A) X 2 

1 0.016253 0.000052 1330 16.0 
2 0.017033 0.000053 1545 13.3 
3 0.016737 0.000085 1352 29.9 
4 0.016733 0.000092 1117 8.4 
Average 0.01669 0.00028 

Table 2. U2o o and U4o o determined from four-beam 
calculation by setting U6o o = +0.01669,{1-2 

These structure factors correspond to two different local minima in the 
refinements. 

NO. 0200 (A -2) 0400 (A -2) t (~.) X 2 

1 -0.012285 +0.014289 1457 30.7 
2 -0.012096 +0.014392 1527 22.8 
3 -0.011701 +0.013536 1499 23.8 
4 -0.012210 +0.014565 1214 20.0 
5 -0.012608 +0.014693 1434 18.5 
6 -0.012442 +0.014784 1719 24.6 
Average -0.01222 (28) +0.01438 (41) 

No. U2oo (A -2) U4oo (.~-2) t (A) X 2 
1 +0.010700 +0.010548 1522 49.7 
2 +0.011144 +0.012236 1537 21.6 
3 +0.010757 +0.011656 1501 21.4 
4 +0.011039 +0.012118 1239 21.6 
5 -t4).011379 +0.012348 1454 17.7 
6 +0.011307 +0.012656 1719 24.4 
Average +0.01105 (25) +0.01193 (68) 

3.  S t r u c t u r e - f a c t o r  d e t e r m i n a t i o n  

In the two-beam approximation, the structure-factor 
amplitude of the reflection in the Bragg condition can be 
directly determined from the positions of the rocking- 
curve fringes. However, the two-beam approximation is 
usually not sufficient for accurate determination of 
structure factors and it gives no information on the 
phase of the structure factor. If a many-beam calcula- 
tion is used to determine an accurate structure factor by 
fitting the rocking curve, the structure factors of all 
other reflections involved in the calculation must be 
known, which is not the case of an unknown crystal 
structure. To overcome this problem, an iterative 
procedure is developed. The procedure starts with a 
two-beam structure-factor determination of one of the 
strong reflections along a systematic row and succes- 
sively includes more beams along the systematic row. 
Here, as an example, the analysis of the (100) 
systematic row is described in detail. 

Fig. 2 shows a selected-area electron diffraction 
pattern taken along the [001] zone axis of the AlmFe 
phase. Along the (100) systematic row, the 600 
reflection is the strongest reflection. CBED patterns 
were acquired in the systematic row orientation where 
only the h00 (h = even) reflections are strongly excited. 
Fig. 3(a) shows such a CBED pattern with the 600 
reflection in the Bragg condition. The position of one 

line scan is indicated in the CBED pattern. The second 
line scan, which is not indicated in the CBED pattern, 
was made parallel to this one. The structure-factor 
amplitude of 600 was determined with the two-beam 
rocking-curve fit by adjusting both the structure-factor 
amplitude I U6001 and the thickness t. Fig. 3(b) shows a 
two-beam rocking-curve fit. The circles in Fig. 3(b) 
represent the experimental intensity profile across the 
rocking-curve fringes of four reflection discs: 200, 400, 
600 and 800, while the solid line is the calculated 
intensity profile. The lower part of Fig. 3(b) shows the 
differences between the calculated and experimental 
intensities at each pixel, where the definition of 
diff/sigma is (c,~. e° - /~/xp)/o ' i .  Only the rocking curve 
of 600 is fitted in the two-beam calculation. The 
structure-factor amplitude and thickness determined 
from this.pattern are IU60ol = 0.016253 (52) A -2 and 
t = 1330A. The X 2 of the two-beam rocking-curve fit is 
16.0. I U60ol is determined in the two-beam approxima- 
tion from four CBED patterns, which were acquired 
from specimen areas of different thickness and different 
orientation perpendicular to the (100) systematic row. 
Table 1 gives the results of the two-beam rocking-curve 
fit of all four patterns. The averaged two-beam 
structure-factor amplitude of 600 is IU6001 = 
0.016 69 (28) ,~-2. 

Fig. 4(a) shows another CBED pattern where both 
the 200 and 400 reflections are on the Bragg positions. 
A four-beam (000, 200, 400, 600) calculation was then 
applied to fit the rocking curve of the discs 200, 400 and 
600. U6oo was set to be +0.016 69/~-2, while U200 and 
U4oo were refined together with the thickness t. 
Changing the sign of U6oo corresponds to a shift of the 
origin in the unit cell, as will be discussed later. The 
refinement ranges of both U2oo and U4o o were set from a 
negative value to a positive value, which means that the 
signs of the structure factors are refined together with 
their value. Here, the positive sign corresponds to the 
phase of 0 and the negative sign to the phase of 7r. Two 
local minima with different X z values were found in the 
refinement corresponding to different sign combinations 
of Uzo o and U4oo. They are: 

Uao o -- -0 .012 096 (54) ~-a;  

U4o o -- +0.014 392 (144) :k-z; 

t = 1527A; X 2 = 22.8; 

and 

U2oo = +0.011 144 (44) A-Z; 

U4oo = +0.012 236 (127) A-2 ;  

t = 1 5 3 7 A ;  X 1 = 2 1 . 6 .  

Fig. 4(b) shows a rocking-curve fit of this pattern, the 
corresponding X 2 is 22.8. U200 and U40 o were refined in 
the same way from six different CBED patterns, which 
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8 0 0 0  (b) ' ~ c i r c l e : e x p e r i m e n t  - 

I ioe:  c a l c u l a t i o n  
6 0 O 0  ; 0  _ X ' = I  6 . 0  ;1 

j -  io 1 
,ooo I i . H A  ; l 

1 0  

- - 1 0  ' ' . . . . .  
2 O O  

8 0 0 0  | ! i | 

(c) ~o c i r c l e : e x p e r i m e n t  

6 0 0 0  ~:o Z = 1 2 . 2  
Ii~)e: c a l c u l a t i o n  

0 - - - ~  - -  ~ ~ ~ - -  ~ '  jl: 

p l x e |  n u m b e r  
Fig. 3. (a) A CBED pattern of the (100) systematic row, where 600 is in the Bragg condition. The white line indicates the position of a line seam 

(b) A two-heam rocking-curve tit for determining IU~J. l u l l  =0.016253,~ -2, t =  1330,~. (c) A four-beam (000, 200, 4130, 600) 
rocking-curve lit for refining U(,~: U(,~ =+0.013222A -z, t =  1370,~. (d) A 15-heam rocking-curve tit for relining /-/6oo: /-/6oo = 
-t-0.012 $84,~ -2, t = 1330A. 
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were recorded from different AlmFe particles of  
different thicknesses and are denoted hereafter as 
g200-g400 patterns. By fitting the rocking curves of  
all these patterns, two local minima were found in each 
of the refinements. A plot of  X 2 as a function of/-/200 and 
U4oo (Fig. 5a) shows two local minima corresponding to 
different sign combinations of U2o o and U4oo in a four- 
beam rocking-curve fit of  a g200-g400 pattern (No. 2 in 

Table 2). Table 2 gives the values of U20 o and U4o0 that 
correspond to those two local minima refined from six 
different CBED patterns, its average value and the 
standard deviation. The difference of the X 2 between the 
two local minima is not big enough to decide which of 
them corresponds to the right structure factors. 

As the prel iminary value of U6oo = +0 .01698,~  -2 
was obtained as a ' two-beam structure factor',  it is 

(b) c i r c l e : e x p e r i m e n t  
6 0 0 0  119e: c a l c u l a t i o n  

Z = 2 2 . 8  j -  
o 

0 1 0 0  2 0 0  3 0 0  4 0 0  

8 0 0 0  
(c)  c i r c l e : e x p e r i m e n t  

6 0 0 0  119e: c a l c u l a t i o n  
Z =7.1 | -  

0 - -  

0 1 O0 2 0 0  3 0 0  4 0 0  
p l x e l  n u m b e r  

Fig. 4. (a) A CBED pattern of the (100) systematic row, where both 200 and 400 are in the Bragg condition. (b) A four-beam rocking-curve fit 
for determining U2oo and U4eo: U2eo = -0.012096, U.4oo = +0.014392~ -2, t = 1527~,; (c) 15-beam calculation refining U2oo and U4oo: 
U2~ = -0.011739, U4oo = +0.016002A -2, t = 1529A. 
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necessary to improve U6oo through further refinement 
by four-beam (000, 200, 400, 600) calculations. In 
these refinements, the U2o o and the U4o o were fixed 
as U2o o = -0 .012 22, U4oo = +0.014 38 ~-2 and 

No. 
U2o o = +0.01105, U4o o = +0.01193 ~-2,  respectively, 1 
and U6oo = +0 .01669A -2 was used as the starting 2 
value in the refinements. It was found that the first set, 3 

i.e. U2o o = -0 .012 22 and U4o o = +0.014 38 A-2, 4 
improved the rocking-curve fit of the g600 patterns, Average 
while the second set of the U2o o and the U4o o produced a 

45.0 

35.0 

25.0 

15.0 
-0.020 

35.0 

25.0 

15.0 

5.0 
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1 o: U200 
x: U400 

o,! 
II, 

i 
! 

0.000 
U200, U400 
(a) 

' i l i  
o x 

x 
o x 

~ x x o x 

O 

0 x x 

0 x 

O 0  x x 

o: U200 ,~ ! : 
x: U400 ~, 

o. o 

0.020 

-0.02 0.02 
U200, U400 

(b) 
Fig. 5. (a) A plot of X 2 as a function of U20o, U4o 0 showing two local 

minima in a four-beam rocking-curve fit (corresponding to No. 2 in 
Table 2) with almost the same xEs. (b) The same relation showing 
that the local minima are distinguishable after using a 15-beam 
calculation (corresponding to Fig. 4c). 

Table 3. U6o o refined by four-beam calculations 
(a) The values of U2oo = -0.01222 and U4oo = +0.014 
kept fixed. 

38tk -2 were 

U600 ( A  - 2 )  A Uoo 0 ( A  - 2 )  t (A) X 2 

+0.013222 0.000046 1370 12.2 
+0.014046 0.000049 1594 12.2 
+0.013612 0.000075 1398 23.1 
+0.014015 0.000096 1144 9.6 
+0.01372 0.00034 

193 A -2 were (b) The values of U2o o =+0.01105 and U4oo = +0.01 
kept fixed. 

No. U6oo (/~-2) A U6o ° (~-2) t (,~,) X 2 

1 +0.018240 0.000067 1365 25.3 
2 +0.019005 0.000063 1587 19.2 
3 +0.018704 0.000089 1397 33.2 
4 +0.018070 0.000116 1116 11.4 
Average +0.01850 0.00037 

fit that was actually worse than that of the two-beam 
calculation, see Table 3. Fig. 3(c) shows the improved 
rocking-curve fit of the CBED pattern in Fig. 3(a) based 
on a four-beam calculation. The X 2 of this fitting is 
12.2, which is better than 16.0 of the two-beam 
calculation, while the X 2 for the second set was obtained 
as 25.3. The second set of U2oo and U4oo could therefore 
be excluded. The structure factor of g600 obtained 
from this second round of refinement is U6oo = 
+0.013 72 (34) A -2. 

A number of g8OO-glO,O,O CBED patterns were then 
recorded with the reflections 800 and 10,0,0 in the 
Bragg condition. Fig. 6(a) shows such a CBED pattern. 
The same procedure as for the U20 o, U4o o and U60 o 
refinement was applied to the g8OO-glO, O,O patterns. 
S_inceUg = U g, an 11-beam (10,0,0, 800 . . . . .  000 . . . . .  
800, 10,0,0) calculation was applied. The structure 
factor of the 200, 400 and 600 reflections obtained 
above were fixed in the calculation, while Us0 o and 
U10,o,o were refined from the rocking-curve fit. Since 
the structure factors of 12,0,0, 14,0,0 . . . . .  2010,0 are not 
known at this step, only the first six beams could be 
included in the structure matrix and diagonalized while 
the other five beams were treated as perturbations by 
using the Bethe perturbation theory (see Spence &Zuo,  
1992). It is safe to treat the reflections 200, . . . ,  10,0,0 
as perturbations because when the reflections 800 and 
10,0,0 are in the Bragg position the 200 is already far 
away from its Bragg condition. Fig. 6(b) is an 11-beam 
rocking-curve fit of the CBED pattern shown in Fig. 
6(a). Table 4 gives the Us0 o and Ulo,o,o refined from five 
different g8OO-glO,O,O patterns. Besides the results 
given in Table 4, there is another local minimum which 
was found having almost the same X 2 as the first one. 
Only after further refinement could the other local 
minimum be excluded. This will be discussed in detail 
in the following sections. 

The same procedures for the structure-factor deter- 
mination were applied to g12,0,O-g14,0,O CBED 
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Table 4. Usoo and Ulo,o,o determined from ll-beam 
calculation 

No. Umo (.~-2) Ulo,o,o (,~-2) t (,4,) X 2 

1 --0.005931 +0.003078 1505 19.4 
2 -0.007819 +0.003858 1311 13.5 
3 --0.007776 +0.003801 1341 10.2 
4 --0.008310 -t-0.004208 711 11.1 
5 --0.008368 -t-0.003917 621 24.6 
Average -0.00764 (89) -t-0.00377 (37) 

patterns (Fig. 7a)with a 15-beam (14,0,0, 12,0,0 . . . . .  
000 . . . . .  12,0,0, 14,0,0) calculation. As discussed by 
Tafio & Metzger (1985), the high-order reflections 
along a systematic row do not show many details in the 
rocking-curve fringes around the Bragg peaks. For the 
reflections with indices higher than 10,0,0, almost no 
rocking-curve fringes were observed besides the 
intensity peaks at their Bragg positions. This can be 
seen from both Fig. 6(a) and Fig. 7(a). Without the 
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Fig. 6. (a) A CBED pattern of the (100) systematic row, where both g800 and gl0,0,0 are in the Bragg condition. (b) 11-beam calculation 
for determining Usoo and Ulo,o,0: Usoo = -0.007776, Ulo,o,o = +0.003801 ,~-2, t = 1341 ,~. (c) 15-beam refinement of U~o and U]o o,o: 
Urea = -0.006570, Uio,o,o =-t-0.003 606,~ -2, t=  1352A. 
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rocking-curve fringes around the Bragg position, the 
thickness of the sample cannot be determined. There- 
fore, the fringes of the 800 reflection were included in 
the rocking-curve fit for determining the thickness 
although only the U12,o,o and U14,0,o were refined in the 
g12,0,0-g14,0,0 patterns. Fig. 7(b) shows a 15-beam 

rocking-curve fit. Table 5 gives the structure factors 
U]2,o,o and U14,o,o determined from four different 
g12,0,0-g14,0,0 CBED patterns. Two different signs 
of U14,0,0 were obtained from the rocking-curve fit with 
almost the same X 2, while the amplitudes of the two 
U14,o,o are almost the same. It is difficult to obtain a 
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Fig. 7. (a) A CBED pattern of the (100) systematic row with a large convergent-beam angle. (b) 15-beam calculation for determining U~2,o,o 
and U14,o,o: Un,o,o=-0.001317. U]4,o,o=-0.002418~, -2, t=1366A. (c) 15-beam refinement of UI2,o,o and Ui4,o,o: Ul2,o,o = 
-0.001245, U14,o,o = -0.002 157.~ -2, t = 1376A. 



932 STRUCTURE-FACTOR DETERMINATION BY QUANTITATIVE CBED 

Table 5. U12,o,o and U14,o,o determined from 15-beam 
calculation 

No. U12,o,o (A -2) U14,o,o (A -2) t (A) X 2 

1 -0.001739 -0.002855 1121 5.0 
2 -0.001376 -0.002062 1511 22.1 
3 -0.001455 -0.002041 1176 17.3 
4 -0.001317 -0.002418 1366 10.4 
5 -0.001177 -0.002571 711 12.4 
Average -0.00141 (19) -0.00239 (31) 

No. U12,0,0 (A -2) U14,0,0 (A -2) t (A) X 2 

1 -0.001523 +0.003112 1121 4.8 
2 -0.001131 +0.001926 1511 21.8 
3 --0.001215 +0.001894 1176 17.1 
4 -0.001031 +0.002245 1376 10.1 
5 -0.000897 +0.002402 711 11.9 
Average -0.00116 (21) +0.00232 (44) 

Table 6. U6o o refined by 15-beam calculations 

NO. U6oo (.~-2) A U6oo (.~-2) t (A) X 2 

1 +0.012884 0.000054 1330 17.6 
2 +0.012858 0.000044 1603 9.3 
3 +0.012485 0.000061 1393 13.4 
4 +0.012776 0.000103 1139 10.6 
Ave rage +0.01275 0.00016 

Table 7. U2o o and U4oo refined from 15-beam calculation 

No. U200 (A -2) U400 (A -2) t (A) X 2 
1 -0.012104 +0.015770 1464 19.0 
2 -0.011739 +0.016002 1529 7.1 
3 -0.011492 +0.015173 1483 9.9 
4 -0.012299 +0.015875 1206 10.7 
5 -0.012236 +0.016686 1429 4.8 
6 -0.011602 +0.016006 1728 12.1 
Average -0.01191 (31) +0.01592 (44) 

distinct difference from the rocking-curve fit. When 
high-order reflections satisfy the Bragg condition, the 
excitation errors of all other reflections along the 
systematic row are very large except the one on the 
Bragg position. The weak dynamical effects of the high- No. 
order reflections makes the rocking-curve fit not very I 
sensitive to the sign of the structure factors. 2 

3 
The next step was to repeat the structure-factor 4 

refinement iteratively using 15-beam (14,0,0, 12,0,0, 5 
. . . .  000 . . . . .  12,0,0, 14,0,0) calculations until there was Average 
no significant improvement of the X 2 in the rocking- 
curve fit and no significant changes of the refined 
structure factors. Different beams were included in the 
scattering matrix for the different CBED patterns. For 
the g200-g400 patterns, for instance, eight beams (400, No. 
200, 000, 200, 400, 600, 800, 10,0,0) were included in 1 
the diagonalization, while the other seven reflections 2 

3 were treated as perturbation. For the_g600 patterns, 4 
however, another set of eight beams (200, 000, 200, 5 
400, 600, 800, 10,0,0, 12,0,0) was used in the Average 
diagonalization. Only the corresponding structure 

No. factors, i.e. the U2oo, U4oo for the g200-g400 patterns 
1 and U60 o for the g600 patterns, were now refined while 2 

the other structure factors were fixed. 15-beam 3 
calculations improved the rocking-curve fit compared 4 
with the previous refinement, which involved less 5 
beams in the calculation. Fig. 3(d) shows a 15-beam Average 
refinement of U60o obtained by fitting the rocking 
curves of the 200, 400, 600 and 800 reflections. The X 2 
of this refinement is 17.6. Much more experimental 
data were included in this refinement than in the 
previous one. The refined structure factor is 
U60o = +0.012 884 (54) A-2 and the refined thickness 
is t = 1330,~. Table 6 gives the U600 obtained from the 
15-beam refinement of four g600 patterns. Fig. 4(c) is 
also a 15-beam rocking-curve fit of the CBED pattern in 
Fig. 4(a). The corresponding X 2 is 7.1, which is much 
better than the X 2 (22.8) of the four-beam calculation in 
Fig. 4(b). Table 7 gives U200 and U400 refined from six 
different g200-g400 CBED patterns. Fig. 6(c) and Fig. 

Table 8. Uso o and Ulo,o,o refined from 15-beam 
calculations 

U8oo (A -2) Ul0,o,o (A -2) t (:k) X 2 

--0.005179 +0.002989 1520 18.8 
--0.006600 +0.003639 1316 13.9 
--0.006570 +0.003606 1352 9.7 
--0.007070 +0.003985 711 11.9 
--0.007220 +0.003736 621 26.2 
--0.00653 (72) +0.00359 (33) 

Table 9. U12,o,o and U14,o,o refined from 15-beam 
calculation 

U12,o,o (A -2) U14,o,o (A -2) t (A) X 2 

-0.001675 -0.002644 1121 5.3 
-0.001308 -0.001845 1526 22.2 
-0.001367 -0.001805 1176 17.0 
-0.001245 -0.002157 1376 10.3 
-0.001134 -0.002267 711 13.4 
-0.00135 (18) -0.00214 (31) 

U12,o,o (A -2) U14,o,o (A -2) t (A) X 2 

-0.001487 +0.003041 1121 4.9 
-0.001087 +0.001845 1526 21.9 
-0.001158 +0.001778 1181 17.1 
-0.000992 +0.002113 1386 10.1 
-0.000890 +0.002232 711 13.3 
-0.00112 (20) +0.00220 (45) 

Table 10. Measured structure factors of reflections 
along the (100) systematic row 

h00 Ug (A -2) 

200 -0.01191 (31) 
400 +0.01592 (44) 
600 +0.01275 (16) 
800 -0.00653 (72) 
10,0,0 +0.00359 (33) 
12,0,0 -0.00135 (18) 
14,0,0 -0.00214 (31) 
or 
12,0,0 -0.00112 (20) 
14,0,0 +0.00220 (45) 
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7(c) are the rocking-curve fits of the 15-beam structure- 
factor refinement of Us0o, U10,0,0, U12,o,0 and U14,0,0, 
respectively. The refinement results are given in Tables 
8 and 9. Table 10 gives all the structure-factor 
amplitudes and signs of the reflections along the (100) 
systematic row determined by a quantitative rocking- 
curve fit. 

4. Discussion 

4.1. Local minima in the structure-factor refinement 

The global refinement procedure (Niichter et al., 
1995) was used in the structure-factor determination. 
This is necessary because several parameters were 
refined simultaneously and no previous knowledge 
about the structure factors was available. As discussed 
in §2.3, the three geometrical parameters can be 
determined accurately from the refinement. Also, if 
enough rocking-curve fringes are seen in the CBED 
patterns, the thickness of the illuminated sample area 
can be determined accurately. The different local 
minima in the refinement are, therefore, mainly caused 
by different choices of the structure-factor amplitudes 
or signs. The best rocking-curve fit or the smallest X 2 

should correspond to the correct structure factors in the 
refinement. However, in some cases, a number of local 
minima have almost the same X2s, the difference 
between them being too small to decide which one is 
the correct structure factor. In some of the cases, more 
beams have to be included in the calculation in order to 
distinguish between the different local minima. An 
example is the four-beam refinement of U20 o and U40 o. 
Typically, two local minima corresponding to different 
sign combinations of U200 and U40 o were found in the 
rocking-curve fit (Fig. 5a). Only when more beams are 
included in the refinement does the X 2 difference 
between the two local minima become big enough to 
select the right structure factors. Fig. 5(b) shows the 
same two local minima as in Fig. 5(a), but with a 15- 
beam calculation. From the difference in the xEs of 
these two local minima, one is now able to tell which 
one corresponds to the correct structure factors. Fig. 
4(c) is the best rocking-curve fit using a 15-beam 
calculation with a X 2 o f  7 .1 .  

For the higher-order reflections, the difference of the 
xEs of the local minima is often even smaller than in the 
lower-order case. For instance, the refinement of U1o,o,o 
from g8OO-glO, O,O CBED patterns, where many beams 
are already included in the refinements, yields two 
different values of U10,o,0 with almost the same X 2. Only 
after iterating the refinement of all the structure factors 
with 15-beam calculations several times does the 
difference of the X2s become sufficiently large to 
exclude one of the local minima. 

However, when the dynamical interaction along the 
systematic row becomes very weak, the rocking-curve 

fitting for the high-order reflections may no longer be 
sensitive to the sign of the corresponding structure 
factors. Two local minima can then no longer be 
distinguished from the difference of the X2s. Two 
results corresponding to different signs of U14,0,0 are 
shown in Tables 5 and 9 as an example where the 
difference of the X2s is too small to tell which one 
should corresponding to the correct structure factor. 
(The structure factors of all other reflections given in 
Table 10 correspond to the negative sign of U14,0,0.) 
Since the main difference of the two results is only the 
sign of U14,0,0, one posSible way to distinguish them is 
by estimating its probability by using the statistical 
method proposed by Woolfson (1961) along the 
systematic row. 

4.2. Definition of the unit-cell origin 

The diffracted intensities and hence the structure- 
factor amplitudes of the different reflections are 
independent of the choice of origin. However, the 
phases of the structure factors will depend on the 
position of the origin. The space group with the 
corresponding set of symmetry operators already 
imposes some restrictions on the choice of origin. 
Only the sites with the same point symmetry will be 
suitable and represent the so-called permissible origins, 
among which the origin has to be chosen. This may be 
done by fixing the signs of a limited number of suitable 
structure factors. In the present centrosymmetric case of 
the body-centered tetragon, the phases of the reflections 
in the h00 row can be chosen as either 0 or Jr. The origin 
will then be fixed by the choice of sign of one structure 
factor in the row. Here, the sign of U6o0 was set as 
positive. If the sign of this structure factor was chosen 
as negative, it would change the signs of all structure 
factors h00, where h = 4n-t-2, to the opposite sign, 
while the signs of other reflections would be unchanged 
(see, for instance, Giacovazzo, 1992). The intensity 
profiles of the rocking curves will of course be the 
saine.  

4.3. Accuracy of the measurement 

The error analysis of the structure-factor refinement 
was discussed in detail by Spence (1993). The 
standard deviations of U6o0 measured from each single 
CBED pattern are given in Tables 1, 3 and 6. The 
error of the averaged structure factors results, 
however, mainly from the dynamical interaction of 
the off-systematic reflections with the systematic 
reflections, which is much larger than the errors of 
each single refinement. 

The excitation of the off-systematic reflections is 
always unavoidable, which will affect the intensity 
distribution inside the diffraction discs. Hence, the 
intensity distribution parallel to the rocking-curve 
fringes is not uniform. Fig. 8(a) shows such an 
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intensity profile, which was obtained from a line scan 
along the Bragg peak of the 800 reflection [indicated as 
a vertical line in Fig. 7(a)]. The intensities of this 
profile in regions b and c, which correspond to the b 
and c in Fig. 7(a), are different. Therefore, the two 
other line scans in Fig. 7(a) across the 800 reflection 
from regions marked b and c give different intensity 
distributions around the Bragg position of the 800 
reflection (see Figs. 7b and c). For a completely 
unknown structure like AlmFe , we do not know how to 
correct for the influence of the off-systematic reflec- 
tions since the corresponding structure factors are not 
known. Because of the dynamical effects, the rocking 

curves of the 800 reflection have to be included as a 
reference in the refinement of U12,0,o and U]4,o,o. When 
the two rocking curves were fit separately, the X 2 of the 
two fits are almost the same but the structure factors 
refined from each fit are different. Figs. 8(b) and (c) 
show the fits of two rocking curves, corresponding to 
the line scans b and c marked in Fig. 7(a), obtained 
by 15-beam calculations. The structure factors refined 
in Fig. 8(b) are Uz2,o,o -- - 0 . 0 0 1 2 5 2  (69), U14,0,0 = 
-0 .002253  (46)/k -2 and ~ = 6.5; while those refined 
from Fig. 8(c) are : .  U12,0,0 = - 0 . 0 0 1 2 4 2  (55), 
U14,o,o = -0 .002  042 (37) A -~ and X 2 = 6.2. If two 
rocking curves are fit together (Fig. 7c), which leads 
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to a higher X 2 (10.3) than two individual fits, the refined 
structure factors [U1_2~o,0 - -0.001 245 (56),~-2, 
U14,0,0=-0.002 157(3,j,-~ j a~e the averages of the 
structure factors refined from two separated rocking- 
curve fits in Figs. 8(b) and (c). 

The intensity of the rocking curve around the Bragg 
positions could be changed by tilting the crystal to 
another orientation around the same systematic row 
because of the dynamical interaction of different off- 
systematic row reflections. Therefore, for a completely 
unknown phase, even if the rocking curve obtained 
from one CBED pattern could be fitted very well (X 2 is 
smaller than 5, for instance), it does not mean that the 
right structure factor has been obtained. It is important 
to fit a number of rocking curves of different CBED 
patterns acquired from different orientations and 
different thicknesses of the crystal. If the structure 
factors refined from those CBED patterns agree within 
reasonable error ranges, it is most likely that the correct 
structure factors are found. Table 10 gives the structure 
factors and their standard deviations for the reflections 
from 200 up to 14,0,0. 

However, the error caused by the limited number of 
beams involved in the refinement could not be excluded 
by averaging the structure factors refined from different 
diffraction conditions. This error could only be 
excluded by increasing the number of beams included 
in the refinement along the systematic row and repeating 
the iterative procedure until a stable result is obtained. 
This means that at the beginning of the iterative 
procedure the deviation of the refined structure factor 
from the final result could be much larger than the error 
bar given from averaging in each individual step. U600 
shown in Tables 1, 3 and 6 is an example where the 
deviation of IU6001 = 0.01669(28) in Table 1 from the 
final result of [U6001 -- 0.012 75 (16) in Table 6 is much 
larger than its error bar. Even so, it is still important to 
estimate the error bar of the refined structure factors at 
each step of the iterative procedure, even at the 
beginning stages, because it confirms that the refined 
structure factors could be used for further refinement. 

Since we have applied this quantitative CBED 
technique to an unknown structure for the first time, it 
is rather difficult to give a very detailed error analysis, 
in particular of the systematic errors. A detailed 
identification and quantification of possible systematic 
errors of this new method definitely requires more 
experience and more work on a number of different 
systems. 

4.4. Absorption 

In the iterative refinement procedure described 
above, we did not account for absorption in the many- 
beam calculation. However, for some test cases, we did 
include it in the calculation. For the CBED patterns of 
the low-order reflections, such as g200-g400 and g600 

patterns, the X2S of the rocking-curve fits decreased 
significantly when absorption was included in the 
refinement. The refined structure factors remained 
inside the error bars of those refined without the 
absorption. However, different refinement results for 
the absorption potential were obtained from the rocking- 
curve fitting of different CBED patterns. The error bars 
of the averaged absorption potentials from different 
CBED patterns are much larger than those of the 
corresponding structure factors. As discussed in §4.3, 
the goodness of the rocking-curve fit is affected by the 
excitation of off-systematic reflections. When absorp- 
tion is included in the refinement, it compensates for the 
ignored off-systematic reflections, which explains the 
quite different absorption potentials refined from 
different CBED patterns. Since these absorption 
potentials are physically not correct, we decided not 
to treat the effect of absorption in the refinement. It is 
difficult to know if there is any systematic error caused 
by ignoring the absorption, but our results show that the 
structure factors refined together with absorption is 
inside the error bar of the structure factors refined 
without absorption. 

5. Concluding remarks 

The motivation of the present research has been to 
determine structure-factor amplitudes, and their 
phases, for use in ab initio structure determination 
by electron diffraction techniques. It is shown here 
that the structure factor for an unknown structure 
can be determined by an iterative procedure for 
reflections in a systematic row. The sign determina- 
tion depends on multiple-beam interactions along the 
row. However, the present iterative procedure will 
become tedious if a large number of reflections are 
needed. It is not a practical alternative to obtain a 
complete data set from this method. But, on the 
other hand, such accurate structure-factor data 
cannot be obtained, so far, by any other electron 
diffraction technique. The main application may 
therefore be a combination of this method with 
other techniques that can yield larger sets of 
intensity data, especially if these data can be treated 
as near-kinematical. 

From the crystallographic viewpoint, a correct 
structure could be revealed using the method of 
Fourier synthesis with the knowledge of correct 
phases and amplitudes of low-order reflections 
together with the more or less correct phases and 
amplitudes of high-order reflections (Peng & Wang, 
1994). The quantitative CBED could provide a part 
of the data, i.e. correct phases and amplitudes of 
low-order reflections, and also part of the high-order 
reflections. Precession electron diffraction is another 
alternative to provide near-kinematical amplitudes of 
high-order reflections. The signs or phases obtained 
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by the present method can then be introduced as 
input for phase determination by other procedures 
like the direct phasing method. In a further study of 
the structure of AlmFe (Gjonnes, Hansen, Berg, 
Midgley & Cheng, 1995), the structure-factor signs 
obtained here have been used as a check on models 
used for Fourier calculations. 

In summary, in this paper, we have shown a 
successful example of applying quantitative CBED to 
a crystal of completely unknown structure by using 
an iterative method for determination of accurate 
structure-factor amplitudes and signs. The main 
advantage of this method is that it is the only one 
that is able to deal with the dynamical scattering 
effects of crystals of unknown structures. Therefore, 
it provides the structure-factor amplitudes and signs 
with very high accuracy for the ab initio structure 
determination. In this work, we have chosen a 
centrosymmetric projection where the phases of the 
structure factors are either 0 or zr. The same 
iterative method could also be applied to non- 
centrosymmetric projections for determining the 
accurate amplitudes and phases of the structure 
factors. 
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